Abstract

A straightforward approach to calculating the free energy change (ΔG) and reorganization energy of a redox process is linear response approximation (LRA). However, accurate prediction of redox properties is still challenging due to difficulties in conformational sampling and vertical energy-gap sampling. Expensive hybrid quantum mechanical/molecular mechanical (QM/MM) calculations are typically employed in sampling energy gaps using conformations from simulations. To alleviate the computational cost associated with the expensive QM method in the QM/MM calculation, we propose machine learning (ML) methods to predict the vertical energy gaps (VEGs). We tested several ML models to predict the VEGs and observed that simple models like linear regression show excellent performance (mean absolute error ∼0.1 eV) in predicting VEGs in all test systems, even when using features extracted from cheaper semiempirical methods. Our best ML model (extra trees regressor) shows a mean absolute error of around 0.1 eV while using features from the cheapest QM method. We anticipate our approach can be generalized to larger macromolecular systems with more complex redox centers.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.