Abstract
A number of machine learning (ML) techniques have recently been proposed to solve color constancy problem in computer vision. Neural networks (NNs) and support vector regression (SVR) in particular, have been shown to outperform many traditional color constancy algorithms. However, neither neural networks nor SVR were compared to simpler regression tools in those studies. In this article, we present results obtained with a linear technique known as ridge regression (RR) and show that it performs better than NNs, SVR, and gray world (GW) algorithm on the same dataset. We also perform uncertainty analysis for NNs, SVR, and RR using bootstrapping and show that ridge regression and SVR are more consistent than neural networks. The shorter training time and single parameter optimization of the proposed approach provides a potential scope for real time video tracking application.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.