Abstract

Tuning the wettability of a flat surface by introducing an array of microscale pillars finds wide applications, especially in engineering a superhydrophobic surface. The wettability of such a pillared surface is quantified by the contact angle (CA) of a water droplet. It is desired to know the CA prior to construction of pillars, in order to obviate the trial-and-errors in experimenting with many different topographies. Given an accurate theoretical prediction of CA has been elusive, we propose a convolutional neural network (CNN) model of CA for a surface patterned with rectangular or cylindrical pillars. By employing a three-dimensional descriptor of the surface topography, the present CNN model can predict experimental CAs within errors comparable to the uncertainties in measuring CAs.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.