Abstract
Improperly managed wastewater effluent poses environmental and public health risks. BOD evaluation is complicated by wastewater treatment. Using key parameters to estimate BOD in wastewater can improve wastewater management and environmental monitoring. This study proposes a BOD determination method based on the Artificial Neural Networks (ANN) model to combine Chemical Oxygen Demand (COD), Suspended Solids (SS), Total Nitrogen (T-N), Ammonia Nitrogen (NH4-N), and Total Phosphorous (T-P) concentrations in wastewater. Twelve different transfer functions are investigated, including the common Hyperbolic Tangent Sigmoid (HTS), Log-sigmoid (LS), and Linear (Li) functions. This research evaluated 576,000 ANN models while considering the variable random number generator due to the ten alternative ANN configuration parameters. This study proposes a new approach to assessing water resources and wastewater facility performance. It also demonstrates ANN’s environmental and educational applications. Based on their RMSE index over the testing datasets and their configuration parameters, twenty ANN architectures are ranked. A BOD prediction equation written in Excel makes testing and applying in real-world applications easier. The developed and proposed ANN-LM 5-8-1 model depicting almost ideal performance metrics proved to be a reliable and helpful tool for scientists, researchers, engineers, and practitioners in water system monitoring and the design phase of wastewater treatment plants.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.