Abstract
Identification of chemical named entities in text and subsequent linkage of information to biological events is of immense value to fulfill the knowledge needs of pharmaceutical and chemical R&D. A significant amount of investigation has been carried out since a decade for identifying chemical named entities at morphological level. However, a barrier still remains in terms of value proposition to scientists at chemistry level. Therefore, the work described here aims to circumvent the information barrier by adaptation of a Conditional Random Fields-based approach for identifying chemical named entities at various levels namely generic chemical level, morphological level, and chemistry level. Substantial effort has been invested on generation of suitable multi-level annotated corpora. Recommended machine learning practices such as active learning-based training corpus generation and feature optimization have been systematically performed. Evaluation of system performance and benchmarking against the other state-of-the-approaches showed improved results.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: International Journal of Software Science and Computational Intelligence
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.