Abstract

INTRODUCTION: Water Distribution Networks are critical infrastructures that have garnered increasing interest from researchers.
 OBJECTIVES: This article conducts a bibliometric analysis to examine trends, the geographical distribution of researchers, hot topics, and international cooperation in using Machine Learning for Water Distribution Networks over the past decade.
 METHODS: Using “water distribution” AND (prediction OR “Machine learning” OR “ML” OR detection OR simulation), as search string, 4859 relevant publications have been retrieved from WoS database. After applying the PRISMA method, we retained 2427 documents for analysis with a Bibliometric library programmed in R.
 RESULTS: China and the USA are the most productive on the ground, and only one African country appears in this ranking in 14th place. We also identified two ways for future research works, which are: the assessment of water quality and the design of optimisation models.
 CONCLUSION: The application of this research in African countries would be fascinating for a better quality of service and efficient management of this resource, which is inaccessible to many African countries.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.