Abstract
We investigate the impact of different numbers of positive and negative examples on machine learning for sapphire crystals defects prediction. We obtain the models of crystal growth parameters influence on the sapphire crystal growth. For example, these models allow predicting the defects that occur due to local overcooling of crucible walls in the thermal node leading to the accelerated crystal growth. We also develop the prediction models for obtained crystal weight, blocks, cracks, bubbles formation, and total defect characteristics. The models were trained on all data sets and later tested for generalization on testing sets, which did not overlap the training set. During training and testing, we find the recall, precision of prediction and analyze the correlation among the features. The results have shown that the precision of neural network method for predicting defects formed by local overcooling of the crucible reached 0.94.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.