Abstract
We employ a repertoire of machine learning models to investigate the cross-sectional return predictability in cryptocurrency markets. While all methods generate substantial economic gains—unlike in other asset classes—the benefits from model complexity are limited. Return predictability derives mainly from a handful of simple characteristics, such as market price, past alpha, illiquidity, and momentum. Contrary to the stock market, abnormal returns in cryptocurrencies originate from the long leg of the trade and persist over time. Furthermore, despite high portfolio turnover, most machine learning strategies remain profitable after trading costs. However, alphas are concentrated in hard-to-trade assets and critically depend on harvesting extreme returns on small, illiquid, and volatile coins.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.