Abstract

Multiple clinical trials failed to demonstrate the efficacy of hydrocortisone, ascorbic acid, and thiamine (HAT) in sepsis. These trials were dominated by patients with pulmonary sepsis and have not accounted for differences in the inflammatory responses across varying etiologies of injury/illness. Hydrocortisone, ascorbic acid, and thiamine have previously revealed tremendous benefits in animal peritonitis sepsis models (cecal ligation and puncture [CLP]) in contradiction to the various clinical trials. The impact of HAT remains unclear in pulmonary sepsis. Our objective was to investigate the impact of HAT in pneumonia, consistent with the predominate etiology in the discordant clinical trials. We hypothesized that, in a pulmonary sepsis model, HAT would act synergistically to reduce end-organ dysfunction by the altering the inflammatory response, in a unique manner compared with CLP. Using Pseudomonas aeruginosa pneumonia, a pulmonary sepsis model (pneumonia [PNA]) was compared directly to previously investigated intra-abdominal sepsis models. Machine learning applied to early vital signs stratified animals into those predicted to die (pDie) versus predicted to live (pLive). Animals were then randomized to receive antibiotics and fluids (vehicle [VEH]) vs. HAT). Vitals, cytokines, vitamin C, and markers of liver and kidney function were assessed in the blood, bronchoalveolar lavage, and organ homogenates. PNA was induced in 119 outbred wild-type Institute of Cancer Research mice (predicted mortality approximately 50%) similar to CLP. In PNA, interleukin 1 receptor antagonist in 72-hour bronchoalveolar lavage was lower with HAT (2.36 ng/mL) compared with VEH (4.88 ng/mL; p = 0.04). The remaining inflammatory cytokines and markers of liver/renal function showed no significant difference with HAT in PNA. PNA vitamin C levels were 0.62 mg/dL (pDie HAT), lower than vitamin C levels after CLP (1.195 mg/dL). Unlike CLP, PNA mice did not develop acute kidney injury (blood urea nitrogen: pDie, 33.5 mg/dL vs. pLive, 27.6 mg/dL; p = 0.17). Furthermore, following PNA, HAT did not significantly reduce microscopic renal oxidative stress (mean gray area: pDie, 16.64 vs. pLive, 6.88; p = 0.93). Unlike CLP where HAT demonstrated a survival benefit, HAT had no impact on survival in PNA. Hydrocortisone, ascorbic acid, and thiamine therapy has minimal benefits in pneumonia. The inflammatory response induced by pulmonary sepsis is unique compared with the response during intra-abdominal sepsis. Consequently, different etiologies of sepsis respond differently to HAT therapy.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.