Abstract
In recent years, scheduling optimization has been utilized in production systems. To construct a suitable mathematical model of a production scheduling problem, modeling techniques that can automatically select an appropriate objective function from historical data are necessary. This paper presents two methods to estimate weighting factors of the objective function in the scheduling problem from historical data, given the information of operation time and setup costs. We propose a machine learning-based method, and an inverse optimization-based method using the input/output data of the scheduling problems when the weighting factors of the objective function are unknown. These two methods are applied to a multi-objective parallel machine scheduling problem and a real-world chemical batch plant scheduling problem. The results of the estimation accuracy evaluation show that the proposed methods for estimating the weighting factors of the objective function are effective.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.