Abstract
Breast cancer is a major public health concern, and early diagnosis and classification are critical for effective treatment. Machine learning and deep learning techniques have shown great promise in the classification and diagnosis of breast cancer. In this review, we examine studies that have used these techniques for breast cancer classification and diagnosis, focusing on five groups of medical images: mammography, ultrasound, MRI, histology, and thermography. We discuss the use of five popular machine learning techniques, including Nearest Neighbor, SVM, Naive Bayesian Network, DT, and ANN, as well as deep learning architectures and convolutional neural networks. Our review finds that machine learning and deep learning techniques have achieved high accuracy rates in breast cancer classification and diagnosis across various medical imaging modalities. Furthermore, these techniques have the potential to improve clinical decision-making and ultimately lead to better patient outcomes.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.