Abstract

Particulate matter (PM) pollution greatly endanger human physical and mental health, and it is of great practical significance to predict PM concentrations accurately. This study measured one-year monitoring data of six main meteorological parameters and PM2.5 concentrations independently at two monitoring sites in central China's Hunan Province. These datasets were then employed to train, validate, and evaluate the proposed extreme gradient boosting (XGBoost) machine learning model and the fully connected neural network deep learning model, respectively. The performances of the two models were compared, analyzed, and optimized through model parameter tuning. The XGBoost model had better prediction ability with R2 higher than 0.761 in the complete test dataset. When the complete dataset was divided into stratified sub-sets by daytime-nighttime periods, the value of R2 increased to 0.856 in the nighttime test dataset. The feature importance and influential mechanism of meteorological variables on PM2.5 concentrations were analyzed and discussed.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.