Abstract

Soot formation models become increasingly important in advanced renewable fuels formulation for soot reduction benefit. This work evaluates performance of machine learning (ML) and deep learning (DL) to predict yield sooting index (YSI) from chemical structure and proposes a tailor-made convolution neural network (CNN)-SDSeries38 for regression problem. In ML, a novel quantitative structure-property relationship (QSPR) is developed for feature extraction and the relationship between molecular structure and YSI is built by ML algorithm. In DL, SDSeries38 contains 9 feature learning modules, 1 regression module for automated feature learning and regression. It adopts standard series network architecture and modular structure, each feature learning module is a stack of convolution, batch normalization, activation, pooling layers. ML-QSPR model outperforms SDSeries38 in accuracy (RMSE = 7.563 vs 19.58), computational speed and the former applies to fuel mixtures. In DL, SDSeries38 network exceeds 10 classical CNN and provides a generic architecture enabling transfer application to other regression problem. DL application to regression is still in its infancy and there is no complete guide on how to develop specific CNN architectures for regression. Some gaps need to be filled: (1) Specially developed CNN architectures for regression are required; (2) The performances of direct transfer learning the classical CNN architectures from classification to regression are modest. A modular structure with typical function modules may provide an ideal solution; (3) Going deeper into the sequence of convolution layers improves predictive accuracy, but bears in mind to keep the number of layers below the threshold to avoid vanishing gradient.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.