Abstract

The Internet of Things (IoT) applications have grown in exorbitant numbers, generating a large amount of data required for intelligent data processing. However, the varying IoT infrastructures (i.e., cloud, edge, fog) and the limitations of the IoT application layer protocols in transmitting/receiving messages become the barriers in creating intelligent IoT applications. These barriers prevent current intelligent IoT applications to adaptively learn from other IoT applications. In this paper, we critically review how IoT-generated data are processed for machine learning analysis and highlight the current challenges in furthering intelligent solutions in the IoT environment. Furthermore, we propose a framework to enable IoT applications to adaptively learn from other IoT applications and present a case study in how the framework can be applied to the real studies in the literature. Finally, we discuss the key factors that have an impact on future intelligent applications for the IoT.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.