Abstract

Data-driven models have been recognized as powerful tools to support Structural Health Monitoring (SHM). This paper contributes to the literature by exploring two data-driven approaches to detect damage through changes in a set of variables that assess the condition of the structure, and accommodates the challenge that may arise due to the influence of environmental and operational variabilities. This influence is reflected in the response of the structure and can reduce the probability of detecting damage in a structure or increase the probability of signaling false positives. This paper conducts a comparative study between a machine learning detection approach (supported by linear regression, random forest, support vector machine, and neural networks) and a cointegration approach, with the aim of detecting damage as early as possible. This study also contributes to the literature by evaluating the merits of the damage detection methods using real data collected from a small-scale structure. The structure is analyzed in a reference state and a perturbed state in which damage is emulated. The results show that both approaches are able to detect damage within the first 24 h, without ever signaling false positives. The cointegration based approach can notably detect damage after 10 h and 15 minutes, while the machine learning approach takes 20 h 30 m to detect damage.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.