Abstract

Biochar nanoparticles have recently attracted attention, owing to their environmental behavior and ecological effects. However, biochar has not been shown to contain carbon quantum dots (< 10 nm) with unique photovoltaic properties. Therefore, this study utilized several characterization techniques to demonstrate the generation of carbon quantum dots in biochar produced from 10 types of farm waste. The generated carbon quantum dots had a quasi-spherical morphology and high-resolution lattice stripes with lattice spacings of 0.20–0.23 nm. Moreover, they contained functional groups with good hydrophilic properties, such as amino and hydroxyl groups, and elemental O, C, and N on the surface. A crucial determinant of the photoluminescence properties of carbon quantum dots is their fluorescence quantum yield. Therefore, the relationship between the biochar preparation parameters and the fluorescence quantum yield was investigated using six machine learning analytical models based on 480 samples. Among the models, the gradient-boosting decision-tree regression model exhibited the best predictive performance (R2 > 0.9, RMSE <0.02, and MAPE <3), and was used for the analysis of feature importance; compared to the properties of the raw material, the production parameters had a greater effect on the fluorescence quantum yield. Additionally, four key features were identified: pyrolysis temperature, residence time, N content, and C/N ratio, which were independent of farm waste type. These features can be used to accurately predict the fluorescence quantum yield of carbon quantum dots in biochar. The relative error range between the predicted and the experimental value of fluorescence quantum yield is 0.00–4.60 %. Thus, the prediction model has the potential to predict the fluorescence quantum yield of carbon quantum dots in other types of farm waste biochar, and provides fundamental information for the study of biochar nanoparticles.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.