Abstract

AbstractVolcanoes produce a variety of seismic signals and, therefore, continuous seismograms provide crucial information for monitoring the state of a volcano. According to their source mechanism and signal properties, seismo‐volcanic signals can be categorized into distinct classes, which works particularly well for short transients. Applying classification approaches to long‐duration continuous signals containing volcanic tremors, characterized by varying signal characteristics, proves challenging due to the complex nature of these signals. That makes it difficult to attribute them to a single volcanic process and questions the feasibility of classification. In the present study, we consider the whole seismic time series as valuable information about the plumbing system (the combination of plumbing structure and activity distribution). The considered data are year‐long seismograms recorded at individual stations near the Klyuchevskoy Volcanic Group (Kamchatka, Russia). With a scattering network and a Uniform Manifold Approximation and Projection (UMAP), we transform the continuous data into a two‐dimensional representation (a seismogram atlas), which helps us to identify sudden and continuous changes in the signal properties. We observe an ever‐changing seismic wavefield that we relate to a continuously evolving plumbing system. Through additional data, we can relate signal variations to various state changes of the volcano including transitions from deep to shallow activity, deep reactivation, weak signals during quiet times, and eruptive activity. The atlases serve as a visual tool for analyzing extensive seismic time series, allowing us to associate specific atlas areas, indicative of similar signal characteristics, with distinct volcanic activities and variations in the volcanic plumbing system.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.