Abstract
Experimentally, the thermal gas-phase deazetization of 2,3-diazabicyclo[2.2.1]hept-2-ene (1) results in the loss of N2 and the formation of bicyclo products 3 (exo) and 4 (endo) in a nonstatistical ratio, with preference for the exo product. Here, we report unrestricted M06-2X quasiclassical trajectories initialized from the concerted N2 ejection transition state that were able to replicate the experimental preference to form 3. We found that the 3:4 ratio results from the relative amounts of very fast (ballistic) exotype trajectories versus trajectories that lead to the 1,3-diradical intermediate 2. These quasiclassical trajectories provided a set of transition-state vibrational, velocity, momenta, and geometric features for the machine learning analysis. A selection of popular supervised classification algorithms (e.g., random forest) provided poor prediction of trajectory outcomes based on only transition-state vibrational quanta and energy features. However, these machine learning models provided more accurate predictions using atomic velocities and atomic positions, attaining ∼70% accuracy using initial conditions and between 85 and 95% accuracy at later reaction time steps. This increased accuracy allowed the feature importance analysis to reveal that, at the later-time analysis, the methylene bridge out-of-plane bending is correlated with trajectory outcomes for the formation of either the exo product or toward the diradical intermediate. Possible reasons for the struggle of machine learning algorithms to classify trajectories based on transition-state features is the heavily overlapping feature values, the finite but very large possible vibrational mode combinations, and the possibility of chaos as trajectories propagate. We examined this chaos by comparing a set of nearly identical trajectories that differed by only a very small scaling of the kinetic energies resulting from the transition-state reaction coordinate.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.