Abstract
We investigate the recently proposed dimensional reduction conjecture in driven disordered systems using a machine learning technique. The conjecture states that a static snapshot of a disordered system driven at a constant velocity is equal to a space-time trajectory of its lower-dimensional pure counterpart. This suggests that the three-dimensional (3D) random field XY model exhibits the Berezinskii-Kosterlitz-Thouless transition when driven out of equilibrium. To verify the conjecture directly by observing configurations of the system, we utilize the capacity of neural networks to detect subtle features of images. Specifically, we train neural networks to differentiate snapshots of the 3D driven random field XY model from space-time trajectories of the two-dimensional pure XY model. Our results demonstrate that the network cannot distinguish between the two, confirming the dimensional reduction conjecture.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.