Abstract

Introduction: Although knowledge about negative effects of coercive measures in psychiatry exists, its prevalence is still high in clinical routine. This study aimed at define risk factors and test machine learning algorithms for their accuracy in the prediction of the risk to being subjected to coercive measures.Methods: In a sample of involuntarily hospitalized patients (n = 393) at the University Hospital of Psychiatry Zurich, we analyzed risk factors for the experience of coercion (n = 170 patients) using chi-square tests and Mann Whitney U tests. We trained machine learning algorithms [logistic regression, Supported Vector Machine (SVM), and decision trees] with these risk factors and tested obtained models for their accuracy via five-fold cross validation. To verify the results we compared them to binary logistic regression.Results: In a model with 8 risk-factors which were available at admission, the SVM algorithm identified 102 out of 170 patients, which had experienced coercion and 174 out of 223 patients without coercion (69% accuracy with 60% sensitivity and 78% specificity, AUC 0.74). In a model with 18 risk-factors, available after discharge, the logistic regression algorithm identified 121 out of 170 with and 176 out of 223 without coercion (75% accuracy, 71% sensitivity, and 79% specificity, AUC 0.82).Discussion: Incorporating both clinical and demographic variables can help to estimate the risk of experiencing coercion for psychiatric patients. This study could show that trained machine learning algorithms are comparable to binary logistic regression and can reach a good or even excellent area under the curve (AUC) in the prediction of the outcome coercion/no coercion when cross validation is used. Due to the better generalizability machine learning is a promising approach for further studies, especially when more variables are analyzed. More detailed knowledge about individual risk factors may help to prevent the occurrence of situations involving coercion.

Highlights

  • Knowledge about negative effects of coercive measures in psychiatry exists, its prevalence is still high in clinical routine

  • In a model with 8 risk-factors which were available at admission, the Supported Vector Machine (SVM) algorithm identified 102 out of 170 patients, which had experienced coercion and 174 out of 223 patients without coercion (69% accuracy with 60% sensitivity and 78% specificity, area under the curve (AUC) 0.74)

  • From the procedural side being retained, police involvement at admission, the number of former admissions, a history of involuntary commitments (IC), a longer duration until patients were allowed for day passes, duration until revocation of involuntary hospitalization and duration of hospitalization, appeal for prolongation from the clinic and appeal for early discharge from the patient were significantly associated with the use of coercion

Read more

Summary

Introduction

Knowledge about negative effects of coercive measures in psychiatry exists, its prevalence is still high in clinical routine. Results: In a model with 8 risk-factors which were available at admission, the SVM algorithm identified 102 out of 170 patients, which had experienced coercion and 174 out of 223 patients without coercion (69% accuracy with 60% sensitivity and 78% specificity, AUC 0.74). In a model with 18 risk-factors, available after discharge, the logistic regression algorithm identified 121 out of 170 with and 176 out of 223 without coercion (75% accuracy, 71% sensitivity, and 79% specificity, AUC 0.82). This study could show that trained machine learning algorithms are comparable to binary logistic regression and can reach a good or even excellent area under the curve (AUC) in the prediction of the outcome coercion/no coercion when cross validation is used. In situations where the patients are threatening themselves or have suicidal ideations caused by the symptoms of their psychiatric disorder, coercive measures might become necessary to secure the patients survival

Objectives
Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call