Abstract

Previously, the analysis of atomic force microscopy (AFM) images allowed us to distinguish normal from cancerous/precancerous human epithelial cervical cells using only the fractal dimension parameter. High-resolution maps of adhesion between the AFM probe and the cell surface were used in that study. However, the separation of cancerous and precancerous cells was rather poor (the area under the curve (AUC) was only 0.79, whereas the accuracy, sensitivity, and specificity were 74%, 58%, and 84%, respectively). At the same time, the separation between premalignant and malignant cells is the most significant from a clinical point of view. Here, we show that the introduction of machine learning methods for the analysis of adhesion maps allows us to distinguish precancerous and cancerous cervical cells with rather good precision (AUC, accuracy, sensitivity, and specificity are 0.93, 83%, 92%, and 78%, respectively). Substantial improvement in sensitivity is significant because of the unmet need in clinical practice to improve the screening of cervical cancer (a relatively low specificity can be compensated by combining this approach with other currently existing screening methods). The random forest decision tree algorithm was utilized in this study. The analysis was carried out using the data of six precancerous primary cell lines and six cancerous primary cell lines, each derived from different humans. The robustness of the classification was verified using K-fold cross-validation (K = 500). The results are statistically significant at p < 0.0001. Statistical significance was determined using the random shuffle method as a control.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call