Abstract

Particle Swarm Optimization (PSO) algorithms within control structures are a realistic approach; their task is often to predict the optimal control values working with a process model (PM). Owing to numerous numerical integrations of the PM, there is a big computational effort that leads to a large controller execution time. The main motivation of this work is to decrease the computational effort and, consequently, the controller execution time. This paper proposes to replace the PSO predictor with a machine learning model that has “learned” the quasi-optimal behavior of the couple (PSO and PM); the training data are obtained through closed-loop simulations over the control horizon. The new controller should preserve the process’s quasi-optimal control. In identical conditions, the process evolutions must also be quasi-optimal. The multiple linear regression and the regression neural networks were considered the predicting models. This paper first proposes algorithms for collecting and aggregating data sets for the learning process. Algorithms for constructing the machine learning models and implementing the controllers and closed-loop simulations are also proposed. The simulations prove that the two machine learning predictors have learned the PSO predictor’s behavior, such that the process evolves almost identically. The resulting controllers’ execution time have decreased hundreds of times while keeping their optimality; the performance index has even slightly increased.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.