Abstract

ABSTRACT Accurate coal seam identification is crucial in coal mining to prevent resource wastage and potential damage to coal seams from misplaced explosives. The current industry standard involves drilling past the seam and refilling the hole, a resource-intensive process. Manual seam detection is error-prone, and geophysical logging, performed for only a subset of drill holes, is costly and time-consuming. Monitor-While-Drilling (MWD) data captures drill response metrics like rotary speed and torque, influenced by local geology. These MWD measurements offer insights into geology, including hardness and rock type; They can be used for real-time rock recognition using advanced artificial intelligence techniques. This study focuses on developing tools for precise coal recognition and identification of the top of coal seams using MWD data. Several Machine Learning classifiers are employed, each providing unique data interpretations, and their results are integrated into a more reliable prediction. An artificial neural network is used for rock density regression, which is then used to correct depth offset between geophysical loggings and drill MWD data. The research demonstrates that MWD data can enable real-time coal seam identification, reducing the reliance on time-consuming and expensive geophysical logging. The integrated model accurately identifies the top of coal seams within a ± 20 cm margin.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.