Abstract

Field Programmable Gate Arrays (FPGAs) are integrated circuits that can be configured by the user after manufacturing, making them suitable for customized hardware prototypes, a feature not available in general-purpose processors in Application Specific Integrated Circuits (ASIC). In this paper, we review the vast Machine Learning (ML) algorithms implemented on FPGAs to increase performance and capabilities in healthcare technology over 2001–2023. In particular, we focus on real-time ML algorithms targeted to FPGAs and hybrid System-on-a-chip (SoC) FPGA architectures for biomedical applications. We discuss how previous works have customized and optimized their ML algorithm and FPGA designs to address the putative embedded systems challenges of limited memory, hardware, and power resources while maintaining scalability to accommodate different network sizes and topologies. We provide a synthesis of articles implementing classifiers and regression algorithms, as they are significant algorithms that cover a wide range of ML algorithms used for biomedical applications. This article is written to inform the biomedical engineering and FPGA design communities to advance knowledge of FPGA-enabled ML accelerators for biomedical applications.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call