Abstract
BACKGROUND Although immune checkpoint inhibitors (ICIs) have demonstrated significant survival benefits in some patients diagnosed with gastric cancer (GC), existing prognostic markers are not universally applicable to all patients with advanced GC. AIM To investigate biomarkers that predict prognosis in GC patients treated with ICIs and develop accurate predictive models. METHODS Data from 273 patients diagnosed with GC and distant metastasis, who un-derwent ≥ 1 cycle(s) of ICIs therapy were included in this study. Patients were randomly divided into training and test sets at a ratio of 7:3. Training set data were used to develop the machine learning models, and the test set was used to validate their predictive ability. Shapley additive explanations were used to provide insights into the best model. RESULTS Among the 273 patients with GC treated with ICIs in this study, 112 died within 1 year, and 129 progressed within the same timeframe. Five features related to overall survival and 4 related to progression-free survival were identified and used to construct eXtreme Gradient Boosting (XGBoost), logistic regression, and decision tree. After comprehensive evaluation, XGBoost demonstrated good accuracy in predicting overall survival and progression-free survival. CONCLUSION The XGBoost model aided in identifying patients with GC who were more likely to benefit from ICIs therapy. Patient nutritional status may, to some extent, reflect prognosis.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.