Abstract

To measure human sperm intracellular pH (pHi) and develop a machine-learning algorithm to predict successful conventional invitro fertilization (IVF) in normospermic patients. Spermatozoa from 76 IVF patients were capacitated invitro. Flow cytometry was used to measure sperm pHi, and computer-assisted semen analysis was used to measure hyperactivated motility. A gradient-boosted machine-learning algorithm was trained on clinical data and sperm pHi and membrane potential from 58 patients to predict successful conventional IVF, defined as a fertilization ratio (number of fertilized oocytes [2 pronuclei]/number of mature oocytes) greater than 0.66. The algorithm was validated on an independent set of data from 18 patients. Academic medical center. Normospermic men undergoing IVF. Patients were excluded if they used frozen sperm, had known male factor infertility, or used intracytoplasmic sperm injection only. None. Successful conventional IVF. Sperm pHi positively correlated with hyperactivated motility and with conventional IVF ratio (n = 76) but not with intracytoplasmic sperm injection fertilization ratio (n = 38). In receiver operating curve analysis of data from the test set (n = 58), the machine-learning algorithm predicted successful conventional IVF with a mean accuracy of 0.72 (n = 18), a mean area under the curve of 0.81, a mean sensitivity of 0.65, and a mean specificity of 0.80. Sperm pHi correlates with conventional fertilization outcomes in normospermic patients undergoing IVF. A machine-learning algorithm can use clinical parameters and markers of capacitation to accurately predict successful fertilization in normospermic men undergoing conventional IVF.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.