Abstract
Minute-long Gravitational Wave (GW) transients are events lasting from few to hundreds of seconds. In opposition to compact binary mergers, their GW signals cover a wide range of poorly understood astrophysical phenomena such as accretion disk instabilities and magnetar flares. The lack of accurate and rapidly generated gravitational-wave emission models prevents the use of matched filtering methods. Such events are thus probed through the template-free excess-power method, consisting in searching for a local excess of power in the time-frequency space correlated between detectors. The problem can be viewed as a search for high-value clustered pixels within an image, which has been generally tackled by deep learning algorithms such as Convolutional Neural Networks (CNNs). In this work, we use a CNN as a anomaly detection tool for the long-duration searches. We show that it can reach a pixel-wise detection despite trained with minimal assumptions, while being able to retrieve both astrophysical signals and noise transients originating from instrumental coupling within the detectors. We also note that our neural network can extrapolate and connect partially disjoint signal tracks in the time-frequency plane.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.