Abstract
A fast method for predicting turbofan fan-stage broadband interaction noise is being developed. The downstream propagating acoustic power in the bypass duct due to the response of the fan exit guide vane (FEGV) to fan wake turbulence is computed based on two-dimensional flat-plate cascade analysis and Green’s method. This study focused on using machine learning to define the fan wake parameters used as inputs to the FEGV response and noise calculation. Machine-learning algorithms are being trained using computational fluid dynamics results. This paper describes the accuracy of machine learning given the available rotor wake data. Further, the effect of errors in the learned input data on the acoustic prediction was studied. Based on this study, the method shows great promise.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.