Abstract

The characterization of microbubbles for venturi tube is important for the associated industrial applications, but still challenging due to the coupling effects of numerous operating factors. Here, we report a machine learning (ML)-aided approach for predicting the characteristics of microbubbles generated by venturi tube. Full factorial design of experiments (DOE) was first carried out, followed by the image post-processing to obtain multi-dimensional dataset. After data cleaning, MLP (Multi-Layer Perception), random forest (RF) and Catboost models were trained to correlate the Sauter mean diameter (ds) to five operating features, namely, throat-to-outlet ratio β, divergent angle θ, gas-to-liquid ratio α, gas Reynolds number Reg and liquid Reynolds number Rel. All three ML models provide excellent predictability on ds, while the Catboost model displays the best extrapolation performance in three investigated scenarios. Internal importance analysis shows that the throat size and Reg play the greatest and least influence on ds, respectively. We also explored the mathematical fitting approach based on obtained experimental dataset. The results show that ML models deliver improved predictive performance over mathematical model, but the latter provides better mechanistic interpretability. This work demonstrates the great potential of ML in the gas–liquid multiphase flow.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call