Abstract

A grand challenge of materials science is predicting synthesis pathways for novel compounds. Data-driven approaches have made significant progress in predicting a compound’s synthesizability; however, some recent attempts ignore phase stability information. Here, we combine thermodynamic stability calculated using density functional theory with composition-based features to train a machine learning model that predicts a material’s synthesizability. Our model predicts the synthesizability of ternary 1:1:1 compositions in the half-Heusler structure, achieving a cross-validated precision of 0.82 and recall of 0.82. Our model shows improvement in predicting non-half-Heuslers compared to a previous study’s model, and identifies 121 synthesizable candidates out of 4141 unreported ternary compositions. More notably, 39 stable compositions are predicted unsynthesizable while 62 unstable compositions are predicted synthesizable; these findings otherwise cannot be made using density functional theory stability alone. This study presents a new approach for accurately predicting synthesizability, and identifies new half-Heuslers for experimental synthesis.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.