Abstract

A primary challenge in organic molecular crystal structure prediction (CSP) is accurately ranking the energies of potential structures. While high-level solid-state density functional theory (DFT) methods allow for mostly reliable discrimination of the low-energy structures, their high computational cost is problematic because of the need to evaluate tens to hundreds of thousands of trial crystal structures to fully explore typical crystal energy landscapes. Consequently, lower-cost but less accurate empirical force fields are often used, sometimes as the first stage of a hierarchical scheme involving multiple stages of increasingly accurate energy calculations. Machine-learned interatomic potentials (MLIPs), trained to reproduce the results of ab initio methods with computational costs close to those of force fields, can improve the efficiency of the CSP by reducing or eliminating the need for costly DFT calculations. Here, we investigate active learning methods for training MLIPs with CSP datasets. The combination of active learning with the well-developed sampling methods from CSP yields potentials in a highly automated workflow that are relevant over a wide range of the crystal packing space. To demonstrate these potentials, we illustrate efficiently reranking large, diverse crystal structure landscapes to near-DFT accuracy from force field-based CSP, improving the reliability of the final energy ranking. Furthermore, we demonstrate how these potentials can be extended to more accurately model structures far from lattice energy minima through additional on-the-fly training within Monte Carlo simulations.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.