Abstract

We propose a physics-informed data-driven framework for urban wind estimation. This framework validates and incorporates the Reynolds number independence for flows under various working conditions, thus allowing the extrapolation for wind conditions far beyond the training data. Another key enabler is a machine-learned non-dimensionalized manifold from snapshot data. The velocity field is modeled using a double encoder–decoder approach. The first encoder normalizes data using the oncoming wind speed, while the second encoder projects this normalized data onto the isometric feature mapping manifold. The decoders reverse this process, with k-nearest neighbor performing the first decoding and the second undoing the normalization. The manifold is coarse-grained by clustering to reduce the computational load for de- and encoding. The sensor-based flow estimation is based on the estimate of the oncoming wind speed and a mapping from sensor signal to the manifold latent variables. The proposed machine-learned flow estimation framework is exemplified for the flow above an unmanned aerial vehicle vertiport. The wind estimation is shown to generalize well for rare wind conditions, not included in the original database.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.