Abstract

This article presents two algebraic characterizations and two related complete problems for the complexity class DLIN that was introduced in [E. Grandjean, Ann. Math. Artif. Intell., 16 (1996), pp. 183--236]. DLIN is essentially the class of all functions that can be computed in linear time on a Random Access Machine which uses only numbers of linear value during its computations. The algebraic characterizations are in terms of recursion schemes that define unary functions. One of these schemes defines several functions simultaneously, while the other one defines only one function. From the algebraic characterizations, we derive two complete problems for DLIN under new, very strict, and machine-independent affine reductions.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call