Abstract

Preventive identification of mechanical parts failures has always played a crucial role in machine maintenance. Over time, as the processing cycles are repeated, the machinery in the production system is subject to wear with a consequent loss of technical efficiency compared to optimal conditions. These conditions can, in some cases, lead to the breakage of the elements with consequent stoppage of the production process pending the replacement of the element. This situation entails a large loss of turnover on the part of the company. For this reason, it is crucial to be able to predict failures in advance to try to replace the element before its wear can cause a reduction in machine performance. Several systems have recently been developed for the preventive faults detection that use a combination of low-cost sensors and algorithms based on machine learning. In this work the different methodologies for the identification of the most common mechanical failures are examined and the most widely applied algorithms based on machine learning are analyzed: Support Vector Machine (SVM) solutions, Artificial Neural Network (ANN) algorithms, Convolutional Neural Network (CNN) model, Recurrent Neural Network (RNN) applications, and Deep Generative Systems. These topics have been described in detail and the works most appreciated by the scientific community have been reviewed to highlight the strengths in identifying faults and to outline the directions for future challenges.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.