Abstract
This study proposes a novel genetic programming method using asynchronous reference-based evaluation (called AREGP) to evolve computer programs through single-event upsets (SEUs) in the on-board computer in space missions. AREGP is an extension of Tierra-based asynchronous genetic programming (TAGP), which was proposed in our previous study. It is based on the idea of the biological simulator, Tierra, where digital creatures are evolved through bit inversions in a program. AREGP not only inherits the advantages of TAGP but also overcomes its limitation, i.e., TAGP cannot select good programs for evolution without an appropriate threshold. Specifically, AREGP introduces an archive mechanism to maintain good programs and a reference-based evaluation by using the archive for appropriate threshold selection and removal. To investigate the effectiveness of the proposed AREGP, simulation experiments are performed to evolve the assembly language program in the SEU environment. In these experiments, the PIC instruction set, which is carried on many types of spacecraft, is used as the evolved assembly program. The experimental results revealed that AREGP cannot only maintain the correct program through SEU with high occurrence rate, but is also better at reducing the size of programs in comparison with TAGP. Additionally, AREGP can achieve a shorter execution step and smaller size of programs, which cannot be achieved by TAGP.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.