Abstract
Cutting tool suffers rapidly during machining titanium-based alloys due to low thermal conductivity. Thus most of the heat is concentrated on the tool rather than chip during machining. To overcome this problem, a suitable cutting parameter, tool geometry, and sustainable methods are necessary. This paper presents the effect of MoS2 solid lubricant (SL), cutting speed, and nose radius during turning of Ti-6Al-4V alloy using the TiAlN coated carbide tool. The experiments are performed at different cutting speeds, nose radius, and flow rates of solid lubricant to study tool wear, surface roughness, and chip morphology. The results show that the use of solid lubricant reduces the tool wear (37%), and the surface roughness (65%) compared to the dry cutting. Similarly, the effects of nose radius and cutting speed have also been studied for both conditions.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.