Abstract
Aluminium Metal Matrix Composite (AMMC) has broad uses in the medical, aerospace, and automobile industries, which have long sought lightweight materials with superior designs and improved properties to improve performance. This analysis has aimed to prepare an AMMC to investigate its machining and mechanical properties. The AMMC is produced using a stir casting process by reinforcing boron carbide and titanium with aluminium 6082. The material’s mechanical properties are studied by using wear test, hardness test, and corrosion test. The wear rate increases when the load increases by varying the load and time with speed as a constant. It is found that the hardness of a material is increased due to titanium and boron carbide as the reinforcement particle in the fabricated AMMC. Using the pitting corrosion technique, the corrosion occurs on the AMMC under the estimated time at room temperature. In order to illustrate the machining characteristics of the aluminium metal matrix composite, an Abrasive Water Jet Machining (AWJM) process has been used. The experiments use L9 orthogonal Array using Taguchi’s method and ANOVA analysis. The input parameters considered are Traverse rate, Stand-off distance, and Nozzle diameter. To find the optimum value of circularity, cylindricity, and surface roughness by varied input parameters. The respective graphs are also plotted. Scanning electron microscopic analysis was performed on the wear-tested specimen and machining surface of the material to determine the distribution of reinforced material and investigate the material’s fracture mechanism. It is found that wear tracks, voids, delamination, micro pits, embedded garnet abrasive particles are located on the machined surface of the AMMC.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.