Abstract

Hard turning with ceramic cutting tool has several benefits over grinding process such as elimination of coolant, reduced processing costs, improved material properties, reduced power consumption and increased productivity. Despite its significant advantages, hard turning can not replace all grinding due to lack of data concerning surface quality and tool wear and hence there is a need to study the machinability characteristics in high precision and high-hardened components. An attempt has been made in this paper to analyze the effects of depth of cut and machining time on machinability aspects such as machining force, power, specific cutting force, surface roughness and tool wear using second order mathematical models during turning of high chromium AISI D2 cold work tool steel with CC650, CC650WG and GC6050WH ceramic inserts. The experiments were planned as per full factorial design (FFD). From the parametric analysis, it is revealed that, the CC650WG wiper insert performs better with reference to surface roughness and tool wear, while the CC650 conventional insert is useful in reducing the machining force, power and specific cutting force.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call