Abstract
Ultrasonic vibration assisted (UVA) cutting has been proven to be an effective method for improving machining behavior in processing hard and brittle materials. However, there is no investigation on three-dimensional (3D) UVA diamond wire sawing (DWS). In this paper, a novel 3D vibration assisted DWS system is developed. A theoretical model is established for predicating sawing forces. Experiments have been carried out on DWS of silicon carbide (SiC) ceramics. The effects of ultrasonic vibration assistance, input vibration direction and cutting parameters on sawing forces, surface morphologies and tool wear are studied respectively. The simulation results indicate that elliptical motion in 3D space can be obtained for the diamond abrasive. The experimental results reveal that the proposed model has sufficient accuracy to predict sawing forces. It is demonstrated that sawing forces can be reduced by ultrasonic vibration assistance either in vertical direction or in longitudinal direction. However, 3D ultrasonic vibration condition provides the lowest sawing force because of the combined advantages. Due to intermittent cutting mode, sawing forces are decreased by 31%, 40% and 29.8% in X, Y and Z direction, respectively. Because debris can be removed more easily from the contact surface and large ductile smooth area can be obtained, 3D ultrasonic vibration assistance generates higher surface integrity than that of traditional sawing process. Moreover, the wear of diamond wire saw can be effectively decreased.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.