Abstract

High-entropy alloy (HEA) is an emerging alloy which consists of five or more metallic elements with equimolar concentrations and exhibits excellent mechanical properties at cryogenic temperature. However, its machinability is almost unknown. In this study, high frequency one-dimensional ultrasonic vibration-assisted diamond turning (UVDT) experiments were conducted on an FeCrCoMnNi-based HEA to investigate the micro-nanoscale material removal mechanisms. Compared with conventional diamond turning, UVDT produced thinner chips, lower cutting forces, less tool wear and better surface integrity. Due to the ultrasonic vibration-assisted burnishing effect, surface scratches were significantly eliminated. A freeform surface was test-fabricated with optical-level finish.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.