Abstract

Organic matter (OM) type critically controls the hydrocarbon generation potential and organic pore development in black shales. However, maceral variation in lacustrine shales and its control on hydrocarbon generation potential and organic pore development are not yet well understood. In this study, 15 Chang 7 Member shale samples of the Yanchang Formation, Ordos Basin, were investigated with organic petrography, Rock-Eval pyrolysis, and a scanning electron microscope to study the maceral composition, hydrocarbon generation potential, and organic pores in this black shale succession. The results show that the studied shales are in the oil window (Ro~0.70%). OM belongs to Type I and Type III kerogen, as demonstrated by Rock-Eval pyrolysis. Macerals in the Chang 7 Member shales are composed of amorphous OM, alginite, sporinite, liptodetrinite, vitrinite, inertinite, and solid bitumen. Amorphous OM and alginite are major hydrocarbon-generating macerals, and their content determines the hydrocarbon potential of shales. Secondary organic pores were not observed in the studied Chang 7 Member shales due to either a low thermal maturity or a dominance of terrigenous OM. Maceral variation can affect the reliability of using Rock-Eval Tmax as a thermal maturity indicator. This study provides important insights into maceral control on hydrocarbon generation and organic pore development in black shales, calling for a critical evaluation of OM in black shale successions with organic petrography.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.