Abstract
We give a rigorous calculation of the large N limit of the partition function of SU(N) gauge theory on a 2D cylinder in the case where one boundary holomony is a so-called special element of type $\rho$. By MacDonald's identity, the partition function factors in this case as a product over positive roots and it is straightforward to calculate the large N asymptotics of the free energy. We obtain the unexpected result that the free energy in these cases is asymptotic to N times a functional of the limit densities of eigenvalues of the boundary holonomies. This appears to contradict the predictions of Gross-Matysin and Kazakov-Wynter that the free energy should have a limit governed by the complex Burgers equation.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.