Abstract

Metastasis is a multistep molecular network process, which is lethal for more than 90% of the cancer patients. Understanding the regulatory functions of metastasis-inducing molecules is in high demand for improved therapeutic cancer approaches. Thus, we studied the post-transcriptional regulation of the crucial carcinogenic and metastasis-mediating molecule metastasis associated in colon cancer 1 (MACC1). In silico analysis revealed MACC1 as a potential target of miR-218, a tumor suppressor miRNA. Expression of these two molecules inversely correlated in colorectal cancer (CRC) cell lines. In a cohort of CRC patient tissues (n = 59), miR-218 is significantly downregulated and MACC1 is upregulated compared with normal mucosa. Luciferase reporter assays with a construct of the MACC1-3′-UTR harboring either the wild type or the mutated miR-218 seed sequence confirmed the specificity of the targeting. miR-218 inhibited significantly MACC1 protein expression, and consistently, MACC1-mediated migration, invasion and colony formation in CRC cells. Anti-miR-218 enhanced the MACC1-mediated migration, invasion and colony formation. Similar findings were observed in the gastric cancer cell line MKN-45. Further, we performed methylation-specific PCR of the SLIT2 and SLIT3 promoter, where miR-218 is encoded in intronic regions. The SLIT2 and SLIT3 promoters are hypermethylated in CRC cell lines. miR-218 and SLIT2 expressions correlated positively. Methyltransferase inhibitor 5-Azacytidine induced miR-218 expression and inhibited the expression of its target MACC1. We also determined that MACC1 has alternative polyadenylation (APA) sites, which results in different lengths of 3′-UTR variants in a CRC cell line. Taken together, miR-218 is post-transcriptionally inhibiting the MACC1 expression and its metastasis-inducing abilities.

Highlights

  • Metastasis associated in colon cancer 1 (MACC1) was identified through differential display RT-PCR analysis of normal colon mucosa, colorectal cancer (CRC) and respective metastasis tissue specimens in our group [1]

  • We report that the tumor suppressor miR-218 post-transcriptionally downregulates metastasis associated in colon cancer 1 (MACC1)

  • In vitro ectopic overexpression of miR-218 significantly inhibited the luciferase activity of MACC1-3ʹ-untranslated regions (UTR) and MACC1 protein expression, as well as MACC1-induced migration, invasion and colony formation in CRC and gastric cancer cells. miR-218 and its host gene SLIT2 expression levels are positively correlated but there was no significant differences in miR-218 expression between metachronous metastasis positive and negative CRC tumor specimens

Read more

Summary

Introduction

Metastasis associated in colon cancer 1 (MACC1) was identified through differential display RT-PCR analysis of normal colon mucosa, colorectal cancer (CRC) and respective metastasis tissue specimens in our group [1]. MACC1 induces the crucial step of carcinogenesis transition from adenoma to carcinoma in mice and human [2, 3]. In CRC and its prime metastasized organs liver and lung, MACC1 was found to be significantly upregulated when compared to mucosa and adenoma [1, 4,5,6,7]. High expression of MACC1 in tumor specimens served as an independent prognostic marker for MFS [1,8]. Numerous studies in a variety of different solid cancer entities such as CRC, gastric and hepatocellular carcinoma, demonstrated that MACC1 serves as a prognostic biomarker for patient tumor progression and metastasis [5, 6, 9,10,11,12]

Methods
Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call