Abstract

Macaulay posets are posets for which there is an analogue of the classical Kruskal-Katona theorem for finite sets. These posets are of great importance in many branches of combinatorics and have numerous applications. We survey mostly new and also some old results on Macaulay posets, where the intention is to present them as pieces of a general theory. In particular, the classical examples of Macaulay posets are included as well as new ones. Emphasis is also put on the construction of Macaulay posets, and their relations to other discrete optimization problems.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.