Abstract

Emerging data-intensive applications, such as graph analytics and data mining, exhibit irregular memory access patterns. Research has shown that with these memory-bound applications, traditional cache-based processor architectures, which exploit locality and regular patterns to mitigate the memory-wall issue, are inefficient. Meantime, novel 3D-stacked memory devices, such as Hybrid Memory Cube (HMC) and High Bandwidth Memory (HBM), promise significant increases in bandwidth that appear extremely appealing for memory-bound applications. However, conventional memory interfaces designed for cache-based architectures and JEDEC DDR devices fit poorly with the 3D-stacked memory, which leads to significant under-utilization of the promised high bandwidth.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call