Abstract
In this paper we investigate the connection between the Mac Lane (co)homology and Wieferich primes in finite localizations of global number rings. Following the ideas of Polishchuk–Positselski [29], we define the Mac Lane (co)homology of the second kind of an associative ring with a central element. We compute these invariants for finite localizations of global number rings with an element w and obtain that the result is closely related to the Wieferich primes to the base w. In particular, for a given non-zero integer w, the infiniteness of Wieferich primes to the base w turns out to be equivalent to the following: for any positive integer n, we have HMLII,0(Z[1n!],w)≠Q.As an application of our technique, we identify the ring structure on the Mac Lane cohomology of a global number ring and compute the Adams operations (introduced in this case by McCarthy [26]) on its Mac Lane homology.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.