Abstract

In Caenorhabditis elegans, a well-defined pathway of heterochronic genes ensures the proper timing of stage-specific developmental events. During the final larval stage, an upregulation of the let-7 microRNA indirectly activates the terminal differentiation factor and central regulator of the larval-to-adult transition, LIN-29, via the downregulation of the let-7 target genes lin-41 and hbl-1. Here, we identify a new heterochronic gene, mab-10, and show that mab-10 encodes a NAB (NGFI-A-binding protein) transcriptional co-factor. MAB-10 acts with LIN-29 to control the expression of genes required to regulate a subset of differentiation events during the larval-to-adult transition, and we show that the NAB-interaction domain of LIN-29 is conserved in Kruppel-family EGR (early growth response) proteins. In mammals, EGR proteins control the differentiation of multiple cell lineages, and EGR-1 acts with NAB proteins to initiate menarche by regulating the transcription of the luteinizing hormone β subunit. Genome-wide association studies of humans and various studies of mouse recently have implicated the mammalian homologs of the C. elegans heterochronic gene lin-28 in regulating cellular differentiation and the timing of menarche. Our work suggests that human homologs of multiple C. elegans heterochronic genes might act in an evolutionarily conserved pathway to promote cellular differentiation and the onset of puberty.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.