Abstract

Let $$f(q):=1+\sum _{n=1}^{\infty } \alpha (n)q^n$$ be the well-known third order mock theta of Ramanujan. In 1964, George Andrews proved an asymptotic formula of the form $$\begin{aligned} \alpha (n)= \sum _{c\le \sqrt{n}} \psi (n)+O_\epsilon \left( n^\epsilon \right) , \end{aligned}$$ where $$\psi (n)$$ is an expression involving generalized Kloosterman sums and the I-Bessel function. Andrews conjectured that the series converges to $$\alpha (n)$$ when extended to infinity, and that it does not converge absolutely. Bringmann and Ono proved the first of these conjectures. Here we obtain a power savings bound for the error in Andrews’ formula, and we also prove the second of these conjectures. Our methods depend on the spectral theory of Maass forms of half-integral weight, and in particular on an average estimate for the Fourier coefficients of such forms which gives a power savings in the spectral parameter. As a further application of this result, we derive a formula which expresses $$\alpha (n)$$ with small error as a sum of exponential terms over imaginary quadratic points (this is similar in spirit to a recent result of Masri). We also obtain a bound for the size of the error term incurred by truncating Rademacher’s analytic formula for the ordinary partition function which improves a result of the first author and Andersen when $$24n-23$$ is squarefree.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.