Abstract

The Middle Atmosphere Alomar Radar System (MAARSY) on the Norwegian island of Andøya is a 53.5MHz monostatic radar with an active phased array antenna. The total array consists of 433 3-element linearly polarized Yagi antennas and can be configured to receive with multiple antenna sections (currently up to 16 complex receiving channels). In order to exploit its multiple-receiver capability for improving the space-time ambiguities of atmospheric/ionospheric targets, the phase difference between receiving channels has to be measured with good precision. Such phases are intrinsic to the system and are due to different cable lengths, pointing positions, filters, attenuators, amplifiers, antenna impedances, etc. In this work, we have operated MAARSY in a radio passive mode to observe the strong radio signals of Cassiopeia A and Cygnus A sources and calibrate the receiving system. By using the so-called fringe-stopping method, we have been able to calibrate the 16 complex channels, including the smaller antenna module that can be used, i.e., an Hexagon consisting of 7 Yagi antennas. The measured phases have been obtained with a mean standard deviation of ∼5°. We have tested the validity of such phases using meteor-head echoes with different configurations and pointing directions. Given that the procedure is easy to implement, it should be used in a routine manner either to corroborate the stability of the system or to measure new phases after upgrades or repairs.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.