Abstract
Lung cancer remains the cause of the most cancer-related deaths each year, with a 5 year survival rate of less than 17%. Targeted therapeutics have been developed against drivers of the lung adenocarcinoma (AC) subtype, but are relevant only to the proportion of patients harbouring these genetic aberrations, emphasizing the need to explore alternative mechanisms of AC development. Natural antisense transcripts (NATs) are long non-coding RNA (lncRNA) products expressed from the opposite strand of coding mRNAs. NATs can function in cis or trans to regulate the transcriptional activity of their cognate gene partner in either a positive or negative fashion. Here we take a novel approach to identify cis- NATs deregulated in lung AC, and explore the function of these genes with regards to their protein coding partner genes. We performed RNA-sequencing on a set of 36 lung AC and matched non-malignant lung tissues. A sign-rank test was used to identify NATs and partner genes with significantly altered expression between tumor and matched normal tissues. These findings were validated in an external dataset of 50 lung AC tumors with matched non-malignant tissue obtained from The Cancer Genome Atlas (TCGA). Survival analysis was performed using a Cox Proportional hazard model, as well as the log-rank method. Analysis of Illumina Hi-seq data from TCGA revealed the majority (79%) of deregulated sense-antisense partnerships observed in AC displayed concordant regulation. However, several discordant cis-NAT pairs were identified including an antisense to OPA INTERACTING PROTEIN 5 (OIP5), a gene required for chromatin segregation, as well as an antisense to HIGH MOBILITY GROUP A1 (HMGA1) a gene involved in the metastatic progression of many cancer types. Both the antisense to OIP5 (OIP5-AS1) as well as the antisense to HMGA1, (HMGA1-AS1) were significantly underexpressed in AC, while we find the overlapping protein coding partner genes to be significantly overexpressed, suggesting that these genes may negatively regulate their sense counterparts. In addition both OIP5 and HMGA1 are significantly associated with 5-year survival. Patients with higher expression levels of either of these genes had a significantly shorter overall survival time than patients with low expression levels, highlighting the potential clinical importance of these genes. This study characterizes the landscape of antisense expression in AC and highlights novel mechanisms of oncogene regulation through natural antisense transcripts. Characterizing these oncogene regulatory mechanisms could uncover therapeutic intervention points and further our understanding of AC biology.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.